

Parallel Performance of Linear Solvers and Preconditioners

by Joshua C. Crone and Lynn B. Munday

ARL-TR-6778 January 2014

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless
so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the
use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5066

ARL-TR-6778 January 2014

Parallel Performance of Linear Solvers and Preconditioners

Joshua C. Crone and Lynn B. Munday

Computational and Information Sciences Directorate, ARL

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

January 2014
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

February 2013–August 2013
4. TITLE AND SUBTITLE

Parallel Performance of Linear Solvers and Preconditioners
5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Joshua C. Crone and Lynn B. Munday
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: RDRL-CIH-C
Aberdeen Proving Ground, MD 21005-5066

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TR-6778

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES

14. ABSTRACT

In this report we examine the performance of parallel linear solvers and preconditioners available in the Hypre, PETSc, and
MUMPS libraries to identify the combination with the shortest wall clock time for large-scale linear systems. The linear system
of equations in this work is produced by a finite element code solving a linear elastic boundary value problem (BVP). The
boundary conditions for the linear elastic BVP are produced by a discrete dislocation dynamics (DDD) simulation and change
with each timestep of the DDD simulation as the dislocation structure evolves. However, the coefficient—or stiffness matrix—
remains constant during the DDD simulation and some expensive matrix factorizations only occur once during initialization.
Our results show that for system sizes of less than three million degrees of freedom (DOF), the MUMPS direct solver is 20×
faster than the best iterative solvers per timestep, but has a large upfront cost for the LU decomposition. Systems larger than
three million DOFs require iterative solvers. The Hypre algebraic multigrid (AMG) preconditioner packaged was the best
performing iterative solver, but was found to be sensitive to the AMG parameters. The PETSc Block Jacobi preconditioner
showed good performance with the default preconditioning setting.
15. SUBJECT TERMS

parallel, linear solvers

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
OF ABSTRACT

UU

18. NUMBER
OF PAGES

24

19a. NAME OF RESPONSIBLE PERSON

Joshua C. Crone
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)

410-306-2156
Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures iv

List of Tables v

1. Introduction 1

2. Linear Elasticity Problem Statement 2

3. Description of Linear Solvers and Preconditioners 2

4. Results and Discussion 3

4.1 Iterative Solvers ...4

4.2 Direct Solver..10

5. Conclusions 12

6. References 13

List of Symbols, Abbreviations, and Acronyms 14

Distribution List 15

iv

List of Figures

Figure 1. Relative serial performance of various solver – preconditioner combinations for
mesh no.1. Values are compared to the PETSc solver without preconditioning.5

Figure 2. Relative serial performance of various solver – preconditioner combinations for
mesh no. 2. Values are compared to the PETSc solver without preconditioning.6

Figure 3. Parallel performance of Hypre – Jacobi and Hypre – AMG for two sets of AMG
parameters. Ideal refers to the solve time of Hypre – Jacobi assuming 100% parallel
efficiency. ...7

Figure 4. Parallel performance of various solver – preconditioner combinations with mesh
no. 2. Ideal refers to the solve time of Hypre – AMG assuming 100% parallel efficiency.9

Figure 5. Parallel performance of various solver – preconditioner combinations with mesh
no. 3. Ideal refers to the solve time of Hypre – Jacobi assuming 100% parallel efficiency. ...10

Figure 6. Comparison of direct solver with various iterative solver – preconditioner
combinations. Both solve time and setup time for MUMPS are included. Ideal refers to
the solve time of Hypre – AMG assuming 100% parallel efficiency.11

v

List of Tables

Table 1. List of solver packages and corresponding preconditoners used in this work.3

Table 2. Number of elements and total degrees of freedom (DOF) for the three meshes used
in this work. ...4

Table 3. Parametric study of the Hypre – AMG parameters to optimize serial performance.
The bottom row corresponds to the final set of parameters referred to as “serial optimized
params” throughout this work. ...6

Table 4. Parametric study of the Hypre – AMG parameters to optimize parallel performance.
The bottom row corresponds to the final set of parameters referred to as “parallel
optimized params” throughout this work. ..8

Table 5. Comparison of Hypre – AMG and MUMPS. ..12

vi

INTENTIONALLY LEFT BLANK.

1

1. Introduction

The need to effectively and efficiently solve linear systems of equations is an important
computational challenge affecting a wide range of applications in scientific computing from solid
mechanics and quantum mechanics to climate modeling and computational geometry. A linear
system of equations can be represented as

௝ݔ௜௝ܣ ൌ ܾ௜ (1)

where Aij is the coefficient matrix, bi is the right-hand side vector, and xi is the vector of
unknowns to be solved for. In this report, we solve the linear system of equations related to the
three-dimensional (3-D) linear elastostatic boundary value problem (BVP). The focus on 3-D
linear elasticity is motivated by our effort to accurately capture free-surface effects in discrete
dislocation dynamics (DDD) simulations. This can be achieved by coupling a DDD simulator for
bulk material (Arsenlis et al., 2007) to a finite element method (FEM) code that computes the
image stress field resulting from the presence of free surfaces at each timestep. We have
developed a massively parallel FE code, FED3, to perform the free-surface computations (Crone
et al., 2013). A typical DDD simulation in bulk will require many timesteps (on the order of 1e5
to 1e6) to reach the desired loading conditions. To achieve similar simulation time scales with
free surfaces and highly refined FEM meshes requires extremely efficient and scalable linear
solvers to compute image stresses with a wall-clock time of a few seconds (s) or less. The keys
to reducing solve time is to minimize parallel communication, computational expense per
iteration, and number of iterations.

In this discrete dislocation dynamics-finite element method (DDD-FEM) coupling application,
the coefficient matrix (stiffness matrix) remains constant from one timestep to the next and only
the right-hand side vector (due to changing boundary conditions) needs to be updated. Therefore,
the setup time for the linear solver and preconditioner only occur on the first solve. For this
reason, we restrict our solver performance study to the time spent solving the system of equation
and ignore the setup costs—except in the case of direct solvers where the setup cost can become
prohibitively expensive for large systems.

In this report, we present a brief description of the problem we are solving as well as the linear
solvers and preconditioners employed for this study. We go on to present the performance results
for each of the solver – preconditioner combinations for various system sizes in terms of both
serial performance and parallel scalability. We conclude by comparing the relative advantages
and drawbacks of the solver – preconditioner options. We emphasize that while we restrict our
evaluation to solving 3-D linear elasticity in this report, the results from this study can be applied
to a wide range of applications where the solution of a linear system of equations is required.

2

2. Linear Elasticity Problem Statement

The formal statement of the 3-D linear elastostatic BVP is as follows (using index notation with
Einstein summation convention):

௜௝,௝ߪ ൌ 0	݅݊	Ω (2)

௜ݑ ൌ ௨ (3)߁	݊݋	௢ݑ

௜௝ߪ ௝݊ ൌ ௢ܶ	݊݋	߁் (4)

where σij is the stress tensor, σij,j is the divergence of the stress tensor, ui is the displacement field,
uo is the prescribed displacement field on the surface Γu with Dirichlet boundary conditions, nj

and To are the surface normal and prescribed tractions, respectively, on surface ΓT with Neumann
boundary conditions, and Ω is the volume of the linear elastic body. The stress tensor is defined
in terms of the infinitesimal strain tensor (εkl) by the generalized Hookes law:

௜௝ߪ ൌ ௜௝௞௟߳௞௟ܥ (5)

where Cijkl are the elastic coefficients and εkl can be further defined in terms of the displacement
field:

௞௟ߝ ൌ
௨ೖ,೗ା௨೗,ೖ

ଶ
 (6)

Substituting equation 5 and 6 into equation 2 and converting to the weak form (see Hughes, 2000
for detailed derivation of the weak form and implementation into the FEM framework), we
recover equation 1 where Aij is the stiffness matrix, xj is replaced by the unknown displacement
field values (uj), and bi is the force vector containing the contributions of the Dirichlet and
Neumann boundary conditions. The resulting stiffness matrix is symmetric positive definite
(SPD); therefore, we focus our study on conjugate gradient (CG) solvers, which are best suited
for SPD matrices (Shewchuk, 1994).

3. Description of Linear Solvers and Preconditioners

For this work, we examine the performance of three open-source, parallel linear solver libraries
and a fourth linear CG solver developed at the U.S. Army Research Laboratory (ARL). The first
open-source library is Hypre, a suite of parallel iterative solvers and preconditioners developed
by Lawrence Livermore National Laboratory (LLNL) (Falgout and Yang, 2002). The second
open-source library is the Portable, Extensible Toolkit for Scientific Computation (PETSc),

3

which is a combination of data structures, linear solvers, and preconditions developed by
Argonne National Laboratory (ANL) (Balay, 2013). PETSc has a built-in interface for many
external solver packages, including the third solver library—the Multifrontal Massively Parallel
Sparse Direct Solver (MUMPS)—which is a parallel direct solver (Amestoy et al., 1998). The
fourth linear solver is a matrix-free iterative CG solver developed at ARL during testing. The
matrix-free form reduces the parallel communication and therefore displays excellent parallel
scalability. However, it is much less efficient than the other libraries and only has a simple
Jacobi preconditioner implemented. It is included as a benchmark when examining parallel
scalability.

A major benefit of PETSc and Hypre is the suite of available preconditioners that can be used to
reduce the number of solver iterations. Table 1 contains a list of all preconditioners used for each
solver. Additional information about each preconditioner can be found in the reference manuals
packaged with each library.

Table 1. List of solver packages and corresponding preconditoners used in this work.

Library/Solver Preconditioner

PETSc

None
Jacobi

Block Jacobi
Additive Schwarz (ASM)

Geometric Algebraic Multigrid (GAMG)
Incomplete LU Factorizationa (ILU)

Incomplete Cholesky Factorizationa (ICC)

Successive Over Relaxationa (SOR)

Hypre

Jacobi
Algebraic Multigrid (MLI)

Algebraic Multigrid (AMG)

Parasails

MUMPS None (Direct Solve)
Matrix-Free CG Jacobi

aIndicates serial preconditioners.

4. Results and Discussion

To evaluate the performance of the various linear solvers and preconditioners, we model uniaxial
tension of an elastic brick. The X, Y, Z dimensions of the brick are 21.8 × 8.175 × 8.175 μm,
with a distributed force in the X direction of 100 MPa/m2. Three quadratic tetrahedral meshes are
created to study the effect of system size on solver performance. Table 2 contains the respective
sizes of each mesh.

4

Table 2. Number of elements and total degrees of freedom (DOF) for
the three meshes used in this work.

Mesh Elements DOFs
1 9279 42,057
2 72,120 308,661
3 5,284,709 22,414,125

All simulations have been carried out on the Pershing Supercomputer at the ARL Department of
Defense (DOD) Supercomputing Resource Center (ARL-DSRC). Pershing is an IBM* iDataPlex
containing two Intel† Sandy Bridge 8-core processors and 32 GB of memory per node. The
compute nodes are interconnected by FDR-10 InfiniBand.‡

4.1 Iterative Solvers

We begin by comparing the iterative solver times for meshes no. 1 and no. 2 in serial to establish
the optimal solvers when parallel communication is not involved. The solve time and number of
iterations for each solver is measured relatively to the PETSc solver with no preconditioner.
Without preconditioning, mesh no. 1 solves in 7.5 s and 1152 iterations, while mesh no. 2 solves
in 145 s and 2341 iterations. The relative improvements of the various solver – preconditioner
combinations are included in figures 1 and 2.

There are two timings for the Hypre – AMG to demonstrate the sensitivity of the preconditioning
parameters parameters. Other works have shown AMG to be an efficient method for solving
linear elasticity (Baker et al., 2009), but the performance is closely coupled to the selection of
proper parameters. The Hypre – AMG preconditioner (BoomerAMG) provides a convenient
interface for selecting the appropriate parameters. As shown in figure 1, by using the default
parameters, BoomerAMG takes approximately 30% longer than PETSc – None to solve.
However, after performing a parametric study on the BoomerAMG parameters, shown in table 2,
we are able to reduce the solver time by a factor of three. The set of parameters determined from
the study in table 2 are labeled as “serial optimized params” in figures 1 and 2. The label
“parallel optimized params” in figure 2 is determined through a second parametric study, which
optimized the BoomerAMG parameters for parallel performance. Further details of this study are
included later in this section. For a description of the complete set of BoomerAMG parameters,
we refer the reader to the Hypre manuals included with the library.

The iterative solver – preconditioner combinations with the shortest solver time for both mesh
no. 1 and no. 2 are the PETSc – Block Jacobi, PETSc – ILU, and Hypre – AMG. While the
relative reduction in solver time is constant between meshes no. 1 and no. 2 for PETSc – Block
Jacobi and PETSc – ILU, the reduction in solver time for Hypre – AMG improves as we increase

* IBM is a registered trademark of the International Business Machines (IBM) Corporation, United States.
† Intel is a registered trademark of the Intel Corporation.
‡ InfiniBand is a registered trademark of the InifiniBand Trade Association (IBTA).

5

the system size. These results suggest that Hypre – AMG has the best performance for serially
solving a system of equations when the AMG parameters have been carefully selected.

Figure 1. Relative serial performance of various solver – preconditioner combinations for mesh no.1. Values
are compared to the PETSc solver without preconditioning.

6

Figure 2. Relative serial performance of various solver – preconditioner combinations for mesh no. 2. Values
are compared to the PETSc solver without preconditioning.

Table 3. Parametric study of the Hypre – AMG parameters to optimize serial performance. The bottom row
corresponds to the final set of parameters referred to as “serial optimized params” throughout this work.

Mesh #2

am
gR

el
ax

W
ei

gh
t

am
gR

el
ax

O
m

eg
a

am
gS

tr
on

gT
hr

es
ho

ld

am
gS

ys
te

m
S

iz
e

am
gM

ax
Ite

ra
tio

ns

am
gU

se
G

SM
G

am
gG

S
M

G
N

um
S

am
pl

es

am
gN

um
Sw

ee
ps

am
gR

el
ax

Ty
pe

am
gM

ea
su

re
Ty

pe

am
gC

oa
rs

en
Ty

pe

am
gM

ax
Le

ve
ls

Iterations Solve Time [s]

Default (30) falgout Default (local) hybridsym 1 Default (1.0) Default (1.0) 0.9 1 Default (1) No default 183 178
Default (30) falgout Default (local) hybridsym 1 Default (1.0) Default (1.0) 0.9 1 Default (1) Yes default 393 286
Default (30) falgout Default (local) hybridsym 1 Default (1.0) Default (1.0) 0.9 3 Default (1) No default 70 66
Default (30) falgout Default (local) hybridsym 1 Default (1.0) Default (1.0) 0.9 3 Default (1) Yes default 51 38
Default (30) falgout Default (local) hybridsym 2 Default (1.0) Default (1.0) 0.9 3 Default (1) Yes default 42 48
Default (30) ruge Default (local) hybridsym 2 Default (1.0) Default (1.0) 0.9 3 Default (1) Yes default 42 48
Default (30) Default (CLJP) Default (local) hybridsym 1 Default (1.0) Default (1.0) 0.9 3 Default (1) Yes default 52 36
Default (30) ruge3c Default (local) hybridsym 1 Default (1.0) Default (1.0) 0.9 3 Default (1) Yes default 51 37
Default (30) pmis Default (local) hybridsym 1 Default (1.0) Default (1.0) 0.9 3 Default (1) Yes default 82 51
Default (30) hmis Default (local) hybridsym 1 Default (1.0) Default (1.0) 0.9 3 Default (1) Yes default 78 48

15 Default (CLJP) Default (local) hybridsym 1 Default (1.0) Default (1.0) 0.9 3 Default (1) Yes default 52 37
45 Default (CLJP) Default (local) hybridsym 1 Default (1.0) Default (1.0) 0.9 3 Default (1) Yes default 52 67

Default (30) Default (CLJP) Default (local) hybridsym 1 Default (1.0) Default (1.0) 1 3 Default (1) Yes default 51 36
Default (30) Default (CLJP) Default (local) hybridsym 1 Default (1.0) Default (1.0) 0.8 3 Default (1) Yes default 54 38
Default (30) Default (CLJP) global hybridsym 1 Default (1.0) Default (1.0) 0.9 3 Default (1) Yes default 52 38

Mesh #2

am
gR

el
ax

W
ei

gh
t

am
gR

el
ax

O
m

eg
a

am
gS

tr
on

gT
hr

es
ho

ld

am
gS

ys
te

m
S

iz
e

am
gM

ax
Ite

ra
tio

ns

am
gU

se
G

SM
G

am
gG

S
M

G
N

um
S

am
pl

es

am
gN

um
Sw

ee
ps

am
gR

el
ax

Ty
pe

am
gM

ea
su

re
Ty

pe

am
gC

oa
rs

en
Ty

pe

am
gM

ax
Le

ve
ls

7

Before examining the parallel efficiency of the various solvers and preconditions, we perform a
second parametric study on the AMG parameters to determine the ideal set of parameters for
parallel solves, as mentioned above. Figure 3 plots the solve time with increasing number of
processing elements (PE) for the Hypre – Jacobi and Hypre – AMG using the “serial optimized
params.” These results show very poor scalability for AMG, with the solve time on eight PEs
taking longer than on two PEs. We observe a crossover point at about 10 PEs where the AMG
precondition takes more time than the Jacobi preconditioner for higher PE counts. To identify the
ideal parameters for parallel solvers, we examine the solve time of mesh no. 2 on one PE and
32 PEs for various parameter combinations, as shown in table 4. The final set of parameters,
listed on the last row of table 4 reduces the solve time on 32 PEs from 125.6 s for the serial
optimized parameters to 4.9 s, a factor of 25 reduction in solve time. The parallel optimized
parameters result in an increase to the solve time by a factor of two for one PE; however, with
four or more PEs, the parallel parameters result in a lower solve time. The increased solve time
with 128 PEs indicates that further parametric studies may be necessary to further optimize the
parallel performance of the Hypre – AMG preconditioner. However, we aim to have
approximately 5000–10,000 DOFs per PE for our final application, and therefore do not intend to
distribute a mesh with the size of mesh no. 2 across more than approximately 64 PEs.

Figure 3. Parallel performance of Hypre – Jacobi and Hypre – AMG for two sets of AMG parameters. Ideal
refers to the solve time of Hypre – Jacobi assuming 100% parallel efficiency.

8

Table 4. Parametric study of the Hypre – AMG parameters to optimize parallel performance. The bottom row
corresponds to the final set of parameters referred to as “parallel optimized params” throughout this work.

Using the “parallel optimized params” for Hypre – AMG, we compare the parallel scalability of
Hypre – AMG to other solver – preconditioner combinations with mesh no. 2 (figure 4) and
mesh no. 3 (figure 5). In figure 4 we observe similar parallel scalability performance for each of
the four solver – preconditioner combinations. The shortest solve times resulted from using
Hypre –AMG and Hypre – Parasails, which have nearly identical timings along all PE counts.
We observe nearly ideal scalability when increasing from one PE to eight PEs, but see the
scalability drop to about 32% parallel efficiency (observed speed-up divided by ideal speed-up)
when increasing to 64 PEs. Since the reduced parallel efficiency is observed across all solver –
preconditioner combinations, it suggests that mesh no. 2 does not have enough DOFs to
efficiently distribute across 64 PEs.

Iterations
Solve

Time [s]
Iterations

Solve
Time [s]

Default (30) cljp Default (local) hybridsym 1 Default (1.0) Default (1.0) 0.9 3 Default (1) Yes default 81 41.3 2889 125.6 1.03
Default (30) cljp Default (local) hybridsym 1 Default (1.0) Default (1.0) 0.9 3 Default (1) No default 94 73.5 197 12.6 18.20
Default (30) cljp Default (local) hybridsym 1 Default (1.0) Default (1.0) 0.6 3 Default (1) No default 50 62.5 102 9.5 20.62
Default (30) cljp Default (local) hybridsym 1 Default (1.0) Default (1.0) 0.3 3 Default (1) No default 37 77.5 165 21.7 11.17
Default (30) cljp Default (local) hybridsym 1 Default (1.0) Default (1.0) 0.45 3 Default (1) No default 41 62.8 154 15.5 12.63
Default (30) cljp Default (local) hybridsym 1 Default (1.0) Default (1.0) 0.75 3 Default (1) No default 66 63.9 143 11.0 18.17
Default (30) cljp global hybridsym 1 Default (1.0) Default (1.0) 0.6 3 Default (1) No default 50 61.9 102 9.1 21.30
Default (30) ruge global hybridsym 1 Default (1.0) Default (1.0) 0.6 3 Default (1) No default 51 59.3 225 23.1 8.01
Default (30) falgout global hybridsym 1 Default (1.0) Default (1.0) 0.6 3 Default (1) No default 50 59.5 136 13.3 13.98
Default (30) ruge3c global hybridsym 1 Default (1.0) Default (1.0) 0.6 3 Default (1) No default 51 59.1 271 25.4 7.27
Default (30) pmis global hybridsym 1 Default (1.0) Default (1.0) 0.6 3 Default (1) No default 144 97.2 924 43.0 7.06
Default (30) hmis global hybridsym 1 Default (1.0) Default (1.0) 0.6 3 Default (1) No default 127 85.9 703 34.7 7.74
Default (30) cljp global hybridsym 1 0.1 Default (1.0) 0.6 3 Default (1) No default 100 159.3 100 11.2 44.61
Default (30) cljp global hybridsym 1 1 0.1 0.6 3 Default (1) No default 86 136.4 92 9.8 43.64
Default (30) cljp global hybridsym 1 1 0.5 0.6 3 Default (1) No default 54 86.3 57 5.1 52.76
Default (30) cljp global hybridsym 1 1 0.75 0.6 3 Default (1) No default 51 81.0 56 5.3 48.10
Default (30) cljp global hybridsym 1 1 0.85 0.6 3 Default (1) No default 50 79.6 65 6.0 41.28
Default (30) cljp global hybridsym 1 1 0.25 0.6 3 Default (1) No default 62 97.4 66 6.3 48.59
Default (30) cljp global hybridsym 1 1 0.65 0.6 3 Default (1) No default 52 82.9 55 4.9 52.41

Mesh #2 (1 PE

am
gG

S
M

G

N
um

S
am

pl
es

am
gU

se
G

SM
G

am
gM

ax
Ite

ra
tio

ns

am
gS

ys
te

m
S

iz
e

am
gS

tr
on

gT
hr

es
ho

ld

am
gR

el
ax

O
m

eg
a

am
gR

el
ax

W
ei

gh
t

am
gN

um
Sw

ee
ps

am
gR

el
ax

Ty
pe

am
gM

ea
su

re
Ty

pe

am
gC

oa
rs

en
Ty

pe

am
gM

ax
Le

ve
ls

Parallel
Efficiency

[%]

Mesh #2 (32 Pes

9

Figure 4. Parallel performance of various solver – preconditioner combinations with mesh no. 2. Ideal refers to the
solve time of Hypre – AMG assuming 100% parallel efficiency.

When increasing the number of DOFs to over 22 million with mesh no. 3 (figure 5), we observe
that excellent parallel efficiency can be achieved on most of the solver – preconditioner
combinations for up to 1024 PEs. Despite having the worst parallel efficiency, Hypre – AMG
has the smallest solve times across all PE counts. It appears that at some PE count above 1024,
Hypre – Jacobi and/or PETSc – Block Jacobi may result in lower solve times than Hypre –
AMG; however, further studies would be required for confirmation. We also note that Hypre was
the only solver capable of solving mesh no. 3 on 64 PEs within the allotted time of one hour (h).
The Linear CG solver ran out of time before completing the solve, while the PETSc solver ran
out of memory while assembling the stiffness matrix. Because the focus of this study was on
achieving the smallest solve times, the higher memory requirement of PETSc is not a significant
concern; however, for memory constrained users, the lower memory usage of Hypre may
become important.

10

Figure 5. Parallel performance of various solver – preconditioner combinations with mesh no. 3. Ideal refers to
the solve time of Hypre – Jacobi assuming 100% parallel efficiency.

4.2 Direct Solver

In applications where the coefficient matrix remains constant throughout a simulation, the use of
direct solvers may become viable. The two primary methods utilized by direct solvers are to
compute the inverse of the coefficient matrix and perform matrix-vector multiplication or
compute a factorization of the coefficient matrix and perform back-substitution. The process of
taking a matrix inverse or performing a complete factorization of a matrix is a resource-intensive
operation, which scales as O(n3). However, once the inverse or factorization is complete for a
given matrix, the solution for any given right-hand side vector can be determined quickly.

To determine the performance of a direct solver, we use MUMPS. In figure 6 we reproduce the
parallel solve times for mesh no. 2 from figure 4 and add in the solve times for MUMPS. Since
the factorization time can become prohibitively expensive with increasing system size, we also
plot the setup time. These results indicate that the direct solver is as much as 60 times faster than
the Hypre – AMG iterative method. While parallel speed-up is observed with MUMPS, we note
that the parallel efficiency is worse than for any of the iterative methods. However, even on 64
PEs, we observe a factor of 20 reduction in solve time compared to Hypre – AMG.

11

Figure 6. Comparison of direct solver with various iterative solver – preconditioner combinations. Both solve time
and setup time for MUMPS are included. Ideal refers to the solve time of Hypre – AMG assuming 100%
parallel efficiency.

To include the high setup costs when comparing MUMPS to Hypre – AMG, we define the
metric N as the number of solves that need to be performed such that

 ெܶ௎ெ௉ௌ
௦௘௧௨௣ ൅ ܰ	 ெܶ௎ெ௉ௌ

௦௢௟௩௘ ൏ ܰ	 ஺ܶெீ
௦௢௟௩௘ (7)

where ெܶ௎ெ௉ௌ
௦௘௧௨௣ is the wall clock time for MUMPS to perform setup and factorization, ெܶ௎ெ௉ௌ

௦௢௟௩௘ 	is

the wall clock time for MUMPS to perform a solve, and ஺ܶெீ
௦௢௟௩௘	is the wall clock time for Hypre –

AMG to perform a solve. We ignore the Hypre – AMG setup time as it is small compared to the
MUMPS setup time and we also assume the solve time is constant from one solve to the next.
However, we note that including the Hypre – AMG setup time would only lower N, further
improving the relative performance of MUMPS. The values of N for 1, 8, and 64 PEs are
included in table 5.The results show that only 10–15 solves are required from MUMPS to
recuperate the additional setup time. To put these savings of computational cost into perspective,
we also compute the total wall clock time for Hypre – AMG and MUMPS if N = 1e5, which is
the target number of timesteps we hope to achieve in FED3 simulations. We find that a one PE
simulation that will take over 55 days with Hypre – AMG can be completed in less than a day
with MUMPS. When scaling up to 64 PEs, a 64-h simulation is reduced to 3 h. These results

12

show that utilizing a direct solver such as MUMPS can enable simulation time scales
unattainable with iterative methods.

Table 5. Comparison of Hypre – AMG and MUMPS.

No. of PEs N
Time for 1e5 Solves (h)

Hypre – AMG MUMPS
1 10.89 1327.78 22.36
8 15.40 166.67 5.02

64 14.38 63.89 3.06

Despite the benefits of MUMPS observed with mesh no. 2, we found that MUMPS was unable to
solve mesh no. 3 with any PE count up to 1024 due to memory limitations and setup times that
went beyond a preset allotted time of 10 h. Simulations with intermediate mesh sizes revealed
that MUMPS is able to handle approximately three million DOFs while keeping the number of
DOFs on the order of 1e3–1e4 per PE. Therefore, large-scale simulations still require iterative
methods.

5. Conclusions

In this report, we examine the performance of various linear solvers and preconditioners to
identify the combinations with the shortest wall clock time for large-scale linear systems. Our
results show that for system sizes of less than three million DOFs, direct solvers perform better
as long as factorization of the coefficient matrix only needs to be performed once. With system
sizes beyond three million DOFs, the factorization of a direct solver becomes intractable. For
large systems, iterative solvers are required. We found that the best performing iterative method
was the AMG preconditioner packaged in the Hypre library. However, the performance was
sensitive to the AMG parameters selected. If a parametric study cannot be performed for a given
system (or similar system), the Block Jacobi preconditioner packaged with the PETSc library
showed good performance with the default preconditioning setting. The optimized AMG
parameters determined in this work should be a good starting point for any 3-D linear elastic
simulations, but transferability to other applications has not yet been studied. The choice of
solvers and preconditioners can have a significant effect on the time required to solve a linear
system of equations, and consequently the total simulation time. A number of factors should go
into the selection of solver – preconditioner combinations including the desired system size, the
size of the computing resources available, the reusability of preconditioning/factorization, and
the number of solves to be performed in a given simulation.

13

6. References

Amestoy, P. R.; Duff, I. S.; L'Excellent. J. -Y. MUMPS Multifrontal Massively Parallel Solver
Version 2.0, 1998.

Arsenlis, A.; Cai, W.; Tang, M.; Rhee, M; Oppelstrup, T.; Hommes, G.; Pierce, T. G.; Bulatov,
V. V. Enabling Strain Hardening Simulations With Dislocation Dynamics. Modelling Simul.
Mater. Sci. Eng 2007, 15, 553–595.

Baker, A. H.; Kolev, Tz. V.; Yang, U. M. Algebraic Multigrid Interpolation Operators for
Linear Elasticity Problems; LLNL-JRNL-412928; 2009.

Balay, S.; Brown, J.; Buschelman, K.; Eijkhout, V.; Gropp, W.; Kaushik, D.; Knepley, M.;
Curfman McInnes, L.; Smith, B.; Zhang, H. PETSc Users Manual Revision 3.4, 2013.

Crone, J. C.; Chung, P. W.; Leiter, K. W.; Knap, J.; Aubry, S.; Hommes, G.; Arsenlis, A. A.
Multiply-Parallel Implementation of Finite Element-Based Discrete Dislocation Dynamics
for Arbitrary Geometries. Modelling Simul. Mater. Sci. Eng., 2013, in preparation.

Falgout, R. D.; Yang, U. M. Hypre: A Library of High Performance Preconditioners,
Computational Science – ICCS (Springer), 2002; 632–641.

Hughes, T. J. R. The Finite Element Method, Dover Publications, Inc., Mineola, NY, 2000.

Shewchuk, J. R. An Introduction to the Conjugate Gradient Method Without the Agonizing Pain,
Carnegie Mellon University, Pittsburgh, PA, 1994.

14

List of Symbols, Abbreviations, and Acronyms

3-D three-dimensional

ANL Argonne National Laboratory

ARL U.S. Army Research Laboratory

BVP boundary value problem

CG conjugate gradient

DDD discrete dislocation dynamics

DDD-FEM discrete dislocation dynamics-finite element method

DOD Department of Defense

DOF degree of freedom

DSRC DOD Supercomputing Resource Center

FEM finite element method

h hour

LLNL Lawrence Livermore National Laboratory

MUMPS Multifrontal Massively Parallel Sparse Direct Solver

PE processing elements

PETSc Portable, Extensible Toolkit for Scientific Computation

s second

SPD symmetric positive definite

NO. OF
COPIES ORGANIZATION

15

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 1 DIRECTOR
 (PDF) US ARMY RESEARCH LAB
 IMAL HRA

 1 DIRECTOR
 (PDF) US ARMY RESEARCH LAB
 RDRL CIO LL

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 1 RDRL CIH C
 (PDF) J CRONE

 16

INTENTIONALLY LEFT BLANK.

